Publications

Publications in peer-reviewed journals and preprint

  1. R. de la Cruz, P. Guerrero, R. Perez-Carrasco, T. Alarcón, K. Page, Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States, Physical Review Letter 120, 128102 (2018). D.O.I: 10.1103/PhysRevLett.120.128102. Preprint version available at arXiv:1705.08683.
  2. R. de la Cruz, P. Guerrero, J. Calvo and T. Alarcón , Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth, Journal Computational Physics Vol. 350, 974–991 (2017). D.O.I: 10.1016/j.jcp.2017.09.019.
  3. R. Perez-Carrasco, P. Guerrero, J. Briscoe, K. Page, Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches, PLoS Computational Biology 12 (10): e1005154 (2016). D.O.I: 10.1371/
    journal.pcbi.1005154. Preprint version available at arXiv:1605.05587.
  4. R. de la Cruz, P. Guerrero, F. Spill and T. Alarcón, Stochastic multi-scale models of competition within heterogeneous cellular populations: simulation methods and mean-field analysisJournal of Theoretical Biology Vol. 407, 161–183 (2016). D.O.I.: 10.1016/j.jtbi.2016.07.028. Preprint version available at ArXiv:1607.01449
  5. M. Bodnar, P. Guerrero, R. Perez-Carrasco, M. J. Piotrowska, Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma, PLoS ONE 11 (5): e0155553 (2016); D.O.I:10.1371/journal.pone.0155553.
  6. R. de la Cruz, P. Guerrero, F. Spill and T. Alarcón, The effects of intrinsic noise on the behaviour of bistable systems in quasi-steady state conditions, Journal of Chemical Physics Vol. 143, 074105 (2015); D.O.I: 10.1063/1.4928575. Preprint version available at arXiv:1508.02895.
  7. F. Spill, P. Guerrero, T. Alarcón, P.K. Maini and H.M. Byrne, Hybrid approaches for multiple-species stochastic reaction-diffusion models, Journal Computational Physics Vol. 299, 49-445 (2015). D.O.I: 10.1016/j.jcp.2015.07.002. Preprint version available at arXiv:1507.07992.
  8. P. Guerrero, H. Byrne, P.K. Maini and T. Alarcón, From invasion to latency: Intracellular noise as a key contrilling factor of competition between resource-limited cellular populations. Journal Mathematical Biology Vol. 76 (1), 1223-156 (2016). D.O.I: 10.1007/s00285-015-0883-2.
  9. P. Guerrero and T. Alarcón, Models estocàstics multiescala de la dinàmica de poblacions cel. lulars: mètodes asimptòtics i numèrics, Butlletí de la Societat Catalana de Matemàtiques Vol. 30 (2), 125-166 (2015). DOI: 10.2436/20.2002.01.61.
  10. P. Guerrero and T. Alarcón, Stochastic multiscale models of cell populations: Asymptotic and numerical mehods, Math. Model. Nat. Phenom. special edition Special issue MMNP on Hybrid Models Vol. 10 (1), 64-93 (2015). D.O.I: 10.1051/mmnp/201510104.
  11. F. Spill, P. Guerrero, T. Alarcón, P.K. Maini and H.M. Byrne, Mesoscopic and continuum modelling of angiognesis. Journal of Mathematical Biology Vol. 70 (3), 485–532 (2015). DOI: 10.1007/s00285-014-0771-1. Preprint version available at arXiv:1401.5701
  12. Corral Á, Deluca A, Font-Clos F, Guerrero P, Korobeinikov A, Massucci F., Extended Abstracts Spring 2013. 130 pages. Birkhäuser 14 Dec 2014 (Book) D.O.I: 10.1007/978-3-319-08138-0.
  13. P. Guerrero, J.L. López and J. Montejo-Gámez, A wavefunction description of quantum Fokker-Planck dissipation: Derivation, stationary solutions and numerical approximation of transient dynamics, J. Phys. A: Mathematical and Theoretical Vol 47, (2014), 035303. D.O.I: 10.1088/1751-8113/47/3/035303.
  14. J. Campos, P. Guerrero, O. Sánchez and J. Soler, On the analysis of travelling waves to a nonlinear flux limited reaction-diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire Vol. 30(1), (2013), 141-155. D.O.I: 10.1016/j.anihpc.2012.07.001.
  15. P. Guerrero, J. Montejo-Gámez, J.L. López and J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner–Goldin type modeling quantum dissipation, Journal of Nonlinear Science Vol. 22 (5), (2012), 631–663. DOI: 10.1007/s00332-012-9123-8.
  16. P. Guerrero, J.L. López and J. Nieto, Global H^1–solvability of the 3D logarithmic Schrödinger equation, Nonlinear Analysis: Real World Applications Vol. 11 (1), (2010), 79–87. DOI: 10.1016/j.nonrwa.2008.10.017.